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ARSTRACT

(Distribution Limitation Statement No. 2)

The purpose of the work repcrted here was to investigate nonsteady-state behavior
in the early stages of one-dimensional shock propagation. This behavior has been
termed stress relaxation. The work consisted of an experimental phase and a
theoretical-computational phase. In the experimental phawe, stress-time profiles
resulting from impact by a gas-gun projectile were observ~d in hard and soft 2024
aluminum and in polyethylene at various distances from the ylane of impact.
Quartz gages were used for the measurements in aluminum, and manganin wire gages
were used in polyethyiene. Peak stress amplitudes were about 14 kbar in aluminum;
there wzs a pronounced decay in amplitude of elastic precursor with propagation
distance. The peak stress ia polyethylene was varied from 3 to 11 kbar; non-
steady-state effects were also observed, although no elastic wave was evident.

In the theoretical and computational phase, several mathematical models of stress
relaxation were developed. Computations based on these models have been performed
by .he method of characteristics and by the artificial viscosity method of von
Neumann and Richtmyer. It has been found that the two-parameter model of stress
rel - ;ation predicts the experimental results more closely than does the one-
parameter model. During this investigation, it was found that no artificial
viscosity 18 needed when stress-relaxing models are used. Some preliminary
results on the inclusion of thermodynamic behavior have been obtained, and it

is shown that a consistent model can be formulated on the basis of equiiibrium
thermodynamics.
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SECTION |
INTRODUCT | ON

i

~ One of the current tasks of the Air Force Weapons Laboratory'iAFWL)
is to achieve a physical understanding and mathematical description of
shock wave propagation in solids. This is a major undertaking because of
the breadth of interest in materials, pressure ranges, and time scales.
Stanford Research Institute has attempted for several yearstoaid the Weap-
ons Laboratory in this task by carrying out research on shock propagation,
equations of state, shock measurement techniques, and structural respense. The
work reported here is a continuation of our effort to be responsive to the
needs of AFWL. We are ccncerned here with the early stuges of shock formation
and in particular with the phenomenon of “stress relaxation.’’ This term
refers, in the present context, to a change with time of the shear yield
strength of a Shock-compressed material. The time dependence of the shear
strength arises from the combination of the very rapid ioading (strain)

rate and the finite time required for the material to flow under thne ap-

plied shear stress.

To describe shock wave propagation, the equations of motion must be
supplemented by constitutive relations describing the physical state of
the material, e.g., the stress-strain behavior. The constitutive relations
in general use at present are considered to be independent of the time
scale of the problem. This treatment can be only an approximation, however,
because real solids require a finite time to respond to any stimulus and

hence will show time-dependent properties or some time scale.

In tnis project all the experiments were performed using plane geom-
etry, and the computationa! models were set up to describe plane wave
propagation. Let us, therefore, consider the plane case in some detail,

The initial shock front is produced by a very rapid acceleration of a
surface of the specimen (in the x direction, say), as by impact of a pro-
jectile. If the tnitial acceleration is i1infinite then one may consider

the initial compression (along ABC in Figure 1, for example) of the material
to he elastic.. Because the strain must be uniaxial, i.e., the macroscopic

strain 1s zero parallel to the shock front, and because the material can
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ipport a shear stress, the lateral
stress Uy(=cx) will be lcss tharn the

normal stress o . However, the in-
stantaneous shear stress p-.oduced

is greater than the elastic forces
can support and shear yielding begins
on a microscopic scale—even though
macroscopic lateral scrain remains
zerc. This yielding, requiring a
finite time, allows o to relax from
its instantaneous value at € to an

eauilibrium value at D as the shear

stress relaxes te its egquilibrium

GA-5783-R value. The state D 1s now reached

a:ross two waves, the first being

FIG. T ILLUSTRATION OF RELAXATION

FROM INSTANTANEOUS STRESS an elastic precursor wave of final
(Point C) TO EQUILIBPIUM STRESS  ypplitude AB (B is called the
(Pcint D)

Hugoniot elastic limit), and the
second having amplitude BD. During
che relaxation process, the precursor amplitude will decrease with propaga-
tion distance, asymptotically approaching AB. The proximity of point D to
the curve of hydrostatic compression {(1sothermal) depends on the magnitude
of the equilibrium shear strength. 7f the material can support essent’ally
zero shear stress after reaching equilibrium, point D lies on the hydrostat.
The larger the equilibrium shear strength, the higher point D lies above
the hydrostat. Equiiibrium stresses greater than those predicted from
quasi-static tensile tests are frequently observed. This phenomeno: may
occur because the eqrilihrium yield strength depends upon the hydrostatic
stress, On the other hand it may be only an apparent equilibrium value"
because the relaxation time is long (many microseconds) compared with the

decation of a shock experiment.

Section II of this report describes exploratory stress-relaxation
experiments in aluminum and polyethylene. This work was done in the
Poulter laboratories of Stanford Research Institute. Section III is con-
cerned with the development of mathematical models and techniques to
describe stress relaxation. This work was performed in the Institute’s
Mathematics Depurtment. Although the two phases were carried out rela-

tively indep:rdently, the experinciatal phase defined the phenomena to be

e v e e e
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described mathematically and also provided s we data to be used in ap-

olying the theory that was developed.

This report builds on previous (nonsystematic) studies in these and

other laboratories; hewever, the problems investigated are in no sense

completely solved. Much more work will be required before time-dependent

effects in shock propagation are fully understood.

&




SECTION 1)
EXPERIMENTAL WORK

by
G. D. Anderson and W. J. Murri

1. Bachground

The purpose of the experimental phase of this program was to look
for nonsteady state effects in the early stages of shock propagation and
to provide data as a guide in the choice of modeis to be used in the
computational phase. Two materials, one metal and one plastic, which
would be expected to exhibit different types of nonsteady behavior were
chosen for study. The’metalrwas 2024 aluminum. Since the Hugoniot
elastic limit of 2024 aluminum is known to depend upon the hardness,
both very soft and very hard samples were studied. The plastic chosen

was a highly crystalline polyethylene.

For both materials the experiments were designed to observe the
shape of an effectively infinite duration plane pressure pulse as a
function of distance from the impact face. The pulses were generated by
impact from a thick, flat projectile accelera&ed by a gas gun. In most
cases the projectile head was of the same material as the target sample;
a constant particle velocity boundary condition could thus be maintained
at the impact surface plane. Stress-time profiles were recorded by
quartz gages for the aluminum and by mangenin wire gages for the

polyethylene.

2. Experimental Techunique

a. Aluminum

Previcus work on 2024 aluminum (Ref. 1) has demonstrated an elastic
precursor amplitude varying from about 1 to 6 kbar depending upon the
initial hardness of the material. In this project we investigated
nonsteady-state elastic-plastic behavior in hard and soft aluminum. The
2024 alloy was chosen instead of pure aluminum since a much greater
difference in hardness could be obiained by heat treatment of the alloy.

Sheets of stock 2024-T35] aluminum ranging in thickness from 0.0i95 to

s v————

S
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0,627 inch were vommercially heat treated." The greatesi hardness was
attained by artificial aging for nine hours at a temperature of 375°F.
The softest aluminum was attained by annealing. This process consisted
of heating the material to 750°F at a rate of 50°F/hour, holding for two
hours at 750°F, cooling at 50°F/hour ¢o 450°F, und then air cooling. The
hardness of -he aged aluminum was Rockwell B85 and that of the annealed

aluminum was Rockwell BO.

After hrat tieatment the specimens were cut into cirecular plates for
mounting on target assemblies and gas gun projectile heads. Target and
projectile flatness are essential for achieving simultaneous impact.

Therefore all projectile heads and terget plates were lapped; leparture

from flatness was held to less than 0.0005 inch across a 2%-1nch diameter,

Quartz gages were chosen to record the stress-time profiles in
aluminum becaunse of the close impedance match of aluminum and quartz. The
target assembly construction showing the sample, quartz gage, tilt pins,
and epoxy support is shown schematically in Figure 2. The four tii: pins
are positioned within 0.002 mm of the impact surface and record the
simultaneity of impact. The epoxy support is made of “C-7" epoxy to
which glase beads nave been added to increase its shock impedance to
match that of quartz, thereby minimizing the effect of lateral rare-

factions.

A complete description of the technique of mounting and aligning
the target perpendicular to the axis of the gun barrel has been given by
Linde and Schmidt (Ref. 2). Aluminum projectile heaas of the same
material as the target were bonded cnto stock aluminum projectiles with
“910"" cement. Care was taken to insure that the plane of the flat face
of the head was perpendicular to the axis of the projectile. The pro-
jectile heads were made sufficiently thick so that no reflected wave from
the back surface of the projectile head could reach the quartz gage

durirg the time the pressure profile was being recorded.

The projectile velocity was maintained at approximately 600 ft/sec,
a speed which produced a plastic wave amplitude of about 14 kbar. This
choice was made so that the steady-state elastic wave amplitude would be

approximately half that of the plastic wave amplitude in the hardened

»
This work vas done by the Departmeat of Metalluigical Research, Keiser Aluminua end Chemicsl
Corpurat jow, Spokeme, Washiagton.

LO

————— -

—————




NNO SVO 40O UN3I NO Q3LNNOW ATGW3SSY 139dvL 40 M3IA NOILDIS-SSOND T "9Oid

g-eeee-2» YV NOILIFS wd




© —————_——

aluminum. In this way both waves could be conveniently observed on the
same oscilloscope trace and the linear range of the quartz crystal gage

would not be exceeded.

b. Polyethylene

All the polyethylene samples were cut from the same 1%-inch thick
sheet of “Hi-fax.”"* Test cores were taken at several positions in the

sheet and examined for uniformity of density and crystallinity. The

density as determined by volume and mass measurements was 0.938 +0.002 gm/cm?

X-ray patterns were teken in three mutually perpendicular directions. The
patterns indicated a degree of crystallinity greater thar 90 percent and
very smal) differences in orientation between directions. For shot con-
struction, polyethylene samples were cut intc circular disks ranging in

thickness from 0.031 vc 0,75 inch.

Manganin wire pressure transducers (Ref. 3) were chosen to monitor
the stress profiles in the polyethylene. The reasons for this choice
were that (1) the impedance mismatch between quartz and polyethylene
would complicate interpretation of quartz records, and (2) manganin could
be imbedded directly in polyethylene, thereby introducing a minimum per-
turbation on the wave profile., Mangarin wire gages aiso occupy much less
area on a specimen for a given length of recording time than do quartz
gages. Because of their small size i1t was possible to use two wires at
different depths in the target from the impact plane in each shot. This

made it possible to observe the same wave front at two positions.

A shot assembly is shown in Figure 3. Thke usual target alignnent
procedure (see Ref. 2) relies upon the electrical conductivity of the
target; since polyethylene is nonconductive this procedure was modified.
An additional O-ring groove was cut in the adapter ring so that the target
assembly could be held by vacuum seal to the adupter ring. A lapped
aluminum plate was substituted for the polyethylene assembly and the
adspter ring was aligned according to the procedure outlined in Ref. 2.
The adapter ring was then clamped securely into position to prevent move-
ment during venting of the gun barrel to atmospheric pressure. The {lat
aluminum plate was then removed and replaced with the polyethylene target

assembly. Finally, the gun barrel was evacuated again.

L]
Purchased from Cadilisc Plestic Company.
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Polyethylene heads were mounted on aluminum projectiles. The poly-
ethylene heads were 0.75 inch thick to prevent reflected waves from the
aluminum backing from overtaking the initial shock during the experiment.
In order to clo-e the tilt pins upon impact it was necessary to cover the
polyethylene projectile head with a thin layer (0.001 inch) of aluminum
foil which was electrically connected o the projectile body and hence to
ground. Flat surfaces were much more difficult to prepare on polyethylene
projectile heeds than they were on aluminum. Consequently both prejectile
tilt and nonflatness of the target contributed to nonsimultaneity of
impact. The contribution to wave tilt due to prejectile tilt was reduced
significantly by using 12-inch long projectiles weighing approximately
2400 gm, whereas 3-inch projectiles weighing about 260 gm were used in the

aluminum studies.

The peak preasures induced intoc most of the polyethylene targets were
in the 2 to J kbar range, although three shots were performed at higher

pressures.

c. Recording Voltage Across Manganin Wire at Low Stress Levels

The voltage change across the sensitive portion of the manganin wire
for shock pressures of 2 to 3 kbar is 10 to 20 mv. It is necessary to
observe this voltage variation oa top of a 2v turn-on step in *he sensing
wire. As discussed in Ref. 3, the ratio of the change in resistance of
the wire to the initial resistance of the wire is proportional to the

stress,

A conatent current (turned on &« few wicroseconds prior to shock
srrival) 1s passed through the wire during an e¢a;j.riment and the percent-
age change in voltage drep across the sensitive portion of the wire is
measured. Consequer ly i1t is necessary to measure either the value of
the current or the initial voltage across the wire (approximately 2v),
snd to measure the change in voltage due to the passage of the shock wave
(approximately 10 to 20 mv). The pressure as a function of time can be

found from the resulting oscilloscope records.

In practice certain oscillcscopes have their sensitivity adjusted
to observe the eatire voltage change across the wire, t.e., the 2v turn-on
plus the 10-20 mv pressure signal on top of it; other oscilloscopes
operating at greater sensitivity observe only the 10-20 av pressure

voltage in order to resolve the deteil of the vave shape. To display the
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signal due to the small presaure pulse, a negative 2v must be fed into
the oscilloscope to balance the positive 2v from the power supply. The
power supply voltage, however, is not always exactly 2v (or whatever the
predetermined value is), but may vary by a few percent depending upon

the length of tame the power supply capacitors are allowed to charge.
This small variation between the power supply turn-on voltage and the
preset compensating voltage may be sufficient to cause the sweep of the
high-sensitivity oscilloscopes to be off-scale. Therefore a special cir-
cuit was designed to eliminate the need for presetting a corpensating

voltage to offset the power supply voltage.

The circuit is shown schematicaily in Figure 4. Any signal from the

gage, such as the turn-on signal from the power supply, is sent along two

DELAY CABLE
RG 124
-

FIG. 4 TIME-DELAY REFLECTOMETER CIRCUIT

parallel paths. On one path it goes immediately to the A input of the
amplifier and on to the oscillcscope. Along the other path it is delayed
for 2 usec and is then fed into the negative B input of the amplifier,

At 2 usec after turn on, the circuit returns the signal reaching the os-
cilloscope to zero. Thus if the power aupply 1s turned on at least 2 j=ec
prior to the pressure signal, the turn-on voltage will be asutomatically,
compensated for, regardless of its amplitude. The circuit then provides a
time window of 2 usec duration for observing the pressure pulée signal be-
fore it too is cancelled. The deley time may be varied by varying the
length of cable in the delay line.

3. Experimental Results and Conclusions

Ali shots fired during the project are listed by number and objective
in Appendix I. Shots which were of an exploratory or developwment nature
are not further discussed in the follo~ing presentation of data.

1




a, Aluminum

The experimental data for hardened and annealed aluminum are pre-
sented in Tahle I. Shock velocities computed from the time interval
between the firing of the tilt pins, which denotes impact, and the ap-
pearance of a portion of the wave at the quartz gage are gernerally lower
than the accepted steady-state values for aluminum. The discrepancies
appear greater for the thinner samples. Elastic velocities are deter-
mined from the time interval between projectile impact and arrival of the

first disturbance at the quartz gage. A 0.000l-inch gap betwren the

quartz gage and the aluminum specimen resulting from a uev.ation in spec-

imen flatness could produce a delay in the response of the quartz gage
which would result in the observed discrepancies. The major purpose of
the experiments was to observe wave shape. Had wave velocity been of

primary interest different measurement techniques would have been used.

The stress wave amplitudes in the aluminum were taken to be those
recorded by the guartz. No Hugoniot data in the 10 to 20 kbur range for
aluminum of the type used here are available to form a basis for estimating
the quartr-aluminum mismatch. Graphical interpolation of aluminum data
(Ref. 1) between the Hugoniot elastic limit and about 25 kbar indicates no
difference in the impedance of quartz and that of soft aluminum. The
hardened aluminum i slightly higher in impedance; this could result in
the quartz reading as much as 0.5 kbar lower than the true aluminum pres-
sure at the 15 kbar level. Since the effects observed a:e time-dependent,
the stress-particle velocity state in the aluminum does not lie oz the
Hugoniot. Therefore, since the impedance mismatch is very small, an at-
tempt to correct the quartz reading using an interpolated graphical
Hugoniot for aluminum when the aluminum state does uot lie on that Hugoniot

would not significuntly enhance the value of the data.

Vave profiles in hardened aluminum as recorded by quartz gages are
shown in Figure 5. The sample thicknesses varied from 3.2 to 15.7 mm.
In Fignre Sa. the record from a 3.2 mm sample, it can be seen that a pre-
cursor whose amplitude wes nearly that of the plastic wave was forming.
In Figures 5b and 5c¢ i{records from 7.89 om and 15.75 mm samples), the pre-
cursors have separated more from the plastic wave and decreased in ampli-
tude. The Hugoniot elastic !'imit for 2024.T4 ix sbout 5.4 kbar. The
aluminum studied here is considerably harder than T4, and the quartz record

indicstes a precursor snplitude of 7.9 kbar at a depth of 15.!5 mm. It is

12
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Table I
ALUMINUM SHOT DATA

| VELOCITY N N
syor | PROJECTILE TARGET OF FIRST ELASTIC WAVE .. PLASTIC WAVE
. NUMBER OTION ——o T

Tile® | Velocity | Type of | Thickness| 0°1 e Fol Frl oy | P8 | PPF
! (ugec) |(mm/Usec) | Aluminum (mn) (nm/taec) ] (mm/usec)|(kbar)| (kbar)] (em/iscc)] (kbar)} (kbar)
v 12172 | 0.032] 0.171 Soft 3.22 5.94 - - - s.39 | - li2.6
12168 | 0.025| 0.197 Soft 7.91 5.76 5,34 | 1.6 ] 2.9 5.0 - lis.s
12170 | 0.043| ©.181 Soft 1.92 6.00 - - - 5.45 - 3.0
12175 | 0.01s| 0.205 Soft 7.93 6.23 5.90 | 2.3 | 3.8] s.58 - |i4s
12169 § 0.060| 0,194 Soft | 15.86 6.00 5.83 1 1.4 | 2.0]~5.0 - 2.5
12807 | 0.014] 0,197 Hard 0.475 - - - - - - 4o
12808 | 0.043; 0.197 Hard | 0.788 - - - - - - {1427
12173 1<0.010{ 0.184 Hard 3.26 5.3 4.27 |12.2 |12.6 | ~3.5 - |i3a
12171 | 0.048] 0.180 Hard 7.89 | s.02 5.62 f10.0 {10.7]| 5.0 - has.s
12174 | 0.015} 0.202 Hard | 15.85 6.29 610 | 7.1 ] 7.9 s5.41 |1d.s f16.1

Tilt scross center conductor of quartsz gage (X inch),

o

See diugram for definition of symbols.

Stress relaxed to 1 3.0 hbar 0.5 usec after impact (0.3} usec after pesk stress was resched).
Streas subaequently increased beyoad 1 4.0 kber,

Siress reluxed to 13.2 kbar 0.6 usec after impact (0.35 usec after peak stress was reached).
Strens subsequentiy increased beyond '4.2 kbar.

Py P
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{(¢c) SHOT 12.174 ——15.85 mm THICK

FIG. 5 QUARTZ GAGE RECORDS
FOR HARDENED 2024 ALUMINUM
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believed that at this depth the elastic wave amplitude had closely ap-

proached the Hugoniot elastic limit.

Wave profiles in scft 2024 aluminum show a different type of behavior.
Quartz gage records are shown in Figure 6. As with the hard aluminum, the
projectile velocity was maintained at about 600 ft/sec, inducing a plastic
wave amplitude of about 14 kbar into the material. The quartz record in
Figure 6a is the wave profile emerging from a 3.2 mm sample. A dip in gage
voltage occurred after the initial rise to near-peak plastic wave pressure.
This dip has been observed on several shots (see the elastic wave profile
in Figure 5c). It is not presently being interpreted as a precursor be-
cause its duration and amplitude were always approximately the same (where-

ever it occurred), regardless of specimen thickness and liardness.

This dip at top of the quartz stress profile has also been seen witn

quartz on “Plexiglas,” so it is not clear at present whether this is due to

the behavior of quartz under certain circumstances or whether it is a
nonsteady-state effect in the materials under consideration. Excluding
the dip at rhe top of the record in Figure 6a, 1o indication of a double
wave is evident. The quartz record from a 7.94 mm thick specimen is shown
in Figure 6b. Here again the dip in the gage record appears near the top
of the wave profile. However, a precursor is clearly evident near the
bottom of the pressure rise. In Figure 6c, the quartz record shows the
stress profile emerging from a 15.86 mm sample; the peak pressure is not

visible but the precursor is clearly well out in advance of che plastic wave.

Th= wave profiles in the soft aluminum differ from those in the hard
in that, when the precursor is resolvable from the plastic wave, it has
slmost achieved its steady-state amplitude. The precursor in the hard
sluminum, however, breaks out at an amplitude only slightly less than that
of the plastic wave. This implies that the relaxation of elastic stress
occuic at a more rapid rate in scft annealed aluminum than it does in
bardened sluminum. Relaxation of shear stress is achieved by plastic flow.
It is quite reasonable to expect this flowto occur more rapidly in annealed
aluminum, where the dislocations are mor® mobile, than in hardened aluminum
where the dislocations are pinned. The decay of precursor amplitude with

propagation distance is shown in Figure 7.

In a symmetrical impact of a thick projectile into a thick target of

the same material, a relaxation of the plasti~ wave smplitude might also

be expected. Consider a material, such as aluminum, which behaves

15
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(b) SHOT 12,175 — 794mm THICK

(c) SHOT 12,169 —I5.86mm THICK

FIG. 6 QUARTZ GAGE RECORDS FOR
FOR ANNEALED 2024 ALUMINUM X
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FIG. 7 DECAY OF ELASTIC PRECURSOR AMPLITUDE
WiTH PROPAGATION DISTANCE IN 2024 ALUMINUM

elastically up to a certain normal stress o, in uniaxial strain and then
yields by plastic flow. The stress-particle velocity Hugoniot is shown

in Figure 8 by the curve OBC, and the stress ¢_, above which the material
no longer behaves elastically under steady-state conditions, is called

the Hugoniot elastic limit. If this material is impacted by a projectile
of the same material moving at a velocity W, the stress-particle velocity
state in the projectile when steady state is reached will be on the curve
WB'C. Because of the symmetry of the impact the curves OBC and WB'C are

mirror images reflected about particle velocity ¥/2.

Let us now assume that the impact is perfectly simultaneous (no tiit)
and that the response of a mass element to a step input is initially
elastic followed by a relaxation of the excess shear stress above the
yield astress to the final plastic state. Upon impact the material at the
interface 1a initially shocked to state A bucause of its elastic response.
As relaxatinn of the shear stress occurs the s'iess decreases and rcaches
C when relaxation is complete. The relaxstion of the stress at the inter-
face 1s communicated to the wave froat, which during this relaxation time
will have propagated into the materiasl. The "“attenustion’ of pesk initial
stress duc to the relaxetion results in some interior particle being

shocked elastically to a lower smplitude stress state, such as D. This

1




PARTICLE VELOCITY
sa-sre3-9

FiG.8 PLOT OF STRESS vs PARTICLE VELOCITY SHOWING A POSSIBLE
MECHANISM FNR STRESS RELAXATION

particle then relaxes toward C along some path. All particles must ulti-

mately reach state C because of the symmetry of the impact. As yet no
At some point the stress at :he

double wave structure has been formed.
wave front will have been attenuated to point E, which is just the value

of the steady-state final stress. The mass element which is initially

shocked to £ achieves :ts rclaxation by accelarating st constant stress

to point C. As a result of the stress and particle velocity gradients in

the wave, some subsequent particle is shocked elastically to point F and
It is ut stater bzlow

T el oot et '+ s e -t

is then further compressed plastically to state C.
E that the double wave structure appesrs. The particie that is shocked
through states OFC experiences a double wave atructure. This process of i
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decay of the elastic precursor continues until point B, the Hugoniot
elastic limit, is reached. Particles at greater depth experience two
steady-state waves in which they are shocked elastically to B and then

plastically to C.

This is just one suggested model for the process by which the wave
could approach steady state. Other equally plausible models can be con-
sidered, in which the ianitial states lie on curves other than linear
extensions of the elastic portion of the Hugoniot. However, in all i
models the boundary condition of constant particle velocity at the inter-
face i1s required by symmetry of the impact. This means that the inter-
face relaxes from the initial stress to point C along a path of constant
particle velocity. Other particles in the target will accelerate with

decreasing or increasing stress toward point C.

In the experiments no significant decrease in the plastic stress
was observed. The final plastic stresses recorded were consistent with

the stress predicted from existing Hugoniot data and the measured pro-

jectile velocities. An -xtension of the elastic portion of the Hugoniot
for 2024-T4 aluminum indicates that the stress difference AC at the inter-
face amounts to about 3 kbar at the stress level under consideration. The
offset DC at some interior point in the target would be correspondingly
less. The experiments indicate that the relaxation of the peak plastic
wave stress from A to £ has occurred in both hard and soft aluminum in

. less than 3.2 mm of travel.

b. Polyethylene

The experimental data for polyethylene are presented in Table II.
Peak stresses in most of the shots were about 3 kbar, but some shots were
fired at about 5 and 11 kbar. The depths of the manganin gages from the
impact plane varied from 0.78 mm to 20.3 mm. No definite elastic precur-
sor wave could be identified in any of the shots. Peak stresses recorded
for any one shot by the two gages at differeat depths in the target gen-

erally egreed within the limits of experimental error.*

Several stress profiles ar¢ shown in Figure 9. A common feature in

all the observed profiles was a rapid rise to about 80 percent of the

. . % The sangania gagoe are iabareatly ropreducible te within J percest; the sacerteiaties in reeding the
polyethylene recerds ware gonerally grastes thas thet.
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Table II
POLYETHYLENE DATA

PROJECTILE GAGE WAVE VELOCITY DATA?
SHOT b u
Stress 1-2 .
NUMBER Tilt® Velacity No Depth (kbar) UO Ux (Between
(usec) (me/usec) . (mm) (mm/usec) {mn/usec) gages)
P P (mm/uusec) )
[ F :
o
12511 - 0.256 -1 |- 2.50 | ~2.4 ~2.38 - '
12512 0.015 0.560 1 3.22 {1.70 2.40 2.04 2.01
2 6.52 -~ 2.24 2.16 2.15 2.29
12513 0.005 0.306 1 6.14 3.50 2.5h
2 12.54 ~2.4 -~ - -
12514 0.025 0.307 1 3.115 12.66 3.05 1.98 1.95
2 9.51 - 3.00 2.14 2.12 2.23
12515 0.037 0.305 1 3.095 {2.65 3.24 2.04 2,01
2 6.332 |2.63 3.13 2,05 2.03 2.05
12514 0.013 0.306 1 3.194 |2.60 3.10 ~2.21 2.60
2 9.634 }2.34 3.02 ~2.33 -
12517 0.008 0.282°¢ 1 4.57 |4.29 5.47 2.25 2.22
2 10.89 |4.20 5.41 2.53 2.52 2.79
12804 0.022 0.298 1 1.20 [2.40 }~3.00 3.74 3.50
2 20.15 [2.95 4.20 2.04 - 2.98
12805 0.022 0.749 1 1.05 - - - -
2 20.30 - 11.90 2.98 2.96 -
12804 0.011 0.722 1 0.787 |5.0 9.9 2.7 2.58
2 18.15 (5.7 9.8 2.82 2.81 2.82
® Across 6 wam, the active length of the gage.
b Sce diagram for definition of symbols. : : . A .

€ Aluminum headed projectile
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3,095mm THICK 6.332mm THICK
(a) SHOT 12,515

10.89mm THICK
{b) SHOT 12,517

O.787mm THICK 18.15mm THICK
{c) SHOT 12,806

FIG. 9 MANGANIN GAGE RECORDS FOR POLYETHYLENE
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final stress, followed by a much slower rise to peak stress. In Shot 12,806
(see Figure 9c) one gage was at a depth of 0.78 mm from impact and the
other was at a depth of 13.1 mm. Both gages recorded the same peak stress
but the deeper gage recorded a much more rounded (slower rising) pulse.
The apparent double wave structure in this record is not being interpreted
as an elastic plastic effect. The separaticn in time of the “two waves”

is 0.07 usec at 0.78 mm from impact, end only 0.1]1 usec at 18.1 mm from

"impact. The double wave appearance was formed quite rapidly and main-

tained that appearance, with both waves moving at nearly the same velocity
over 8 distance of 17.3 mm. The rounding off of the top of the wave front
profile with propagation distance has also been observed in Plexiglas

(Ref. 4).

The wave profiles indicate a nonsteady-state behavior, and the average
shock velocities from impact to the first gage are lower in every case but
one then the average shock velocity between gages. Under nonsteady-state
conditioas it is not strictly valid to apply the Rankine-Hugoniot jump

conditions and calculate Hugoniot points. However, assuming that the wave

.has nearly resched st~ady state and that the average velocity to the final

gage is quite.-near the instantaneous velocity, some Hugoniot points have
been calculated. These data are plotted in Figure 10. Two points of
Wagner, Waldorf, and Louiz (Ref. 3) are included for comparison.

In a parsllel program carried on simultaneously with the present work
(Contract AF 29(601)-7214], aiqilar experiments have been performed on

"or

ieflon.”

A decay in peak stress of from 5 percent to 10 percent between
gages was observed (gage smeparation about 6 mm), as well as a definite
rounding of the wave front as it propagated. The wave profiles at a par-
ticular gage location were r~latively flat-topped; thus tue reduction cf
peak pressure and change of wave shape are not due to norwal attennation

but are nonsteady-state effects.

It is of particular interest to compare shock velocities with mea-
sured sound velocities in polymers becesuse of the dependence of sound
velocity-on froquency in certain frequency ranges, snd becsuse of the lack
of evidence of an elastic precursor in eny polymer yet studied. The data »
{for polyethylene suggest that the velocity increased somewhat as the wave
propagated into the specimen. This effect could result from a aystematic
error in measuring the impact time, slthough the effect was large in
Shot No. 12,517 and |>l|rge timing error would be necesssry to account for
it. The most reliasble transit times (and hence velocities) are those

2
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measured between like events—in this case, between two gage records.
The corresponding shock velocity at the lowest pressure of this study
(~3 kbar) is 2:2 ¢ 0.1 mm/usec (three shots). This i1s to be compared
with a measured (at 1 Mc/sec) longitudinal sound speed of 2.26 mm/usec.
This situation is in contrast to that for Plexiglas, in which the lowest
measurements of shock velocity (~3 kbar) still exceeded measured values

of the longitudinal sound velocity.

X-ray patterns were taken of some samples of polyethylene before and
after impact. The patterne prior to im{ act indicate a high degree of
crystallinity (about 90 percent) with random orientation of crystallites.
Patterns taken after impact show that some of the crystallinity was lost,
but there was a net orientation of the remaining crystallites such that
the polymer chains tend to lie in a plane parallel to the shock front.

It should be emphasized that these were not controlled recovery experi-
ments. The specimens were subjected to gross deformations which can be

avoided by proper target design.

4. Summary and Suggestions For Further Work on Strcss Relaxation

The experimental effort has heen directed toward the observation of
stress relaxation phenomena in soft and hurd 2024 aluminum and in highly
crystalline polysthylene. A nonsteady-state elastic precursor which de-
creased in amplitude with propagation patl. length was clearly detected in
hardened aluminum. Nonsteady-state effects were also detected in the soft
aluminum and polyethylene but were not as dramatically esvident as in the
hardened aluminum. A low-amplitude elastic wave which did not vary by e
large amount was observed in the soft aluminum. No elastic precursor wes
seen in the polyethylene. however, the wave shape was obaserved te vary as

the wave propagated, indicating a nonsteady state.

The present work represcnts only & beginning in the much needed study
of nonsteady-state propagstion of low-amplitude stress waves and the mech-
anisms of failure of solids under repidly spplied loads. An extenasion of
this work could profitably be directed coward studies on metals or poly-
mers. "“Stress reiaxation’ in the context of this project is manifested by
the decay in amplitude of the eiastic precursor in an elastoplastic solid
as the wave propegetes during ihe early states of shock formation, t.e.,
very soon after impact. This decay in amplitude is associsted with the
finite time required for the plastic yielding to occur. The ultimate
steady-state amplitude of the elastic wave 33 related to the static yield
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point of the material. Inasmuck as no elastic precursor has been observed
in polyethylene (or several other polymers), it is suggested that the defi-
nition of the term “stress relaxation’” be broadened to include the general

process by which the wave approaches its steady-state nrnfile.

- a. Suggestions for Work on !2tals

The present study has established the existence of stress relaxation
in 2024 alumirum. The decay in amplitude of the elastic precursor with
propagation distance appears greatest in hardened 2024 aluminum. Nonsteady-
state behavior is visible up to a depth of at least 0.5 inch from the plane
of impact. It is now clear that nonsteady-state effects are quite impor-
tant, perhaps equally as important as nonhydrodynamic effects, and further

investigation of these effects is required for a complete understanding of
wave propagation in solids.

The present work has been devoted to observing the shape of the pres-

sure pulse rise as a function of propagation distance. The duration of the

pulses has been essentially infinite because very thick projectile heads
have been used. Projectile heads have been made cf the same material as
the target to maintain a constant particle velocity bourdary condition at

the impact plane. Experiments using thin-headed projectiles should also be

performed, as the long-range goal of this work 1s to gain a complete under-

standing of shock propagation. Such understanding must include the
nonsteady-state behavior of the rise of the wave, the flow behind the wave,
and particularly the manner in which rarefactions overtake the shock and

produce attenuation. At the present time there is every resson to believe

stress relaxation shorld affect all parts of the flew. Ore very important

question to answer is whether atress relaxation affects th- late stages of

shock propagaticn, t.e.. wave shape after a propagation dist.ance of many

initial pulse thicknesses. Also, what effect does stress relaxstion have
on spall thresholds and other damage criteris?

The work suggested below is simed at continuing the efforts of the
past year toward snswering these gquestions.

(1) Aluminum. Having esteblished stress ralaxation in aluminum
using very long pulses, the work must now be extended to pulses of shart
duration. Shock profiles should

be observed after propagating several

pulse widths and results should be compared to pred.ction of attenuation
wodels.

The effect of ieitial temperature on stress rrlaxation effects is

']




unknown.

should be performed on hardened aluminum at initial temperatures from

Experiments similar to those performed during the past year

200°C up toward uelting (~660°C).

tended are tungsten and titanium. Quartz or manganin wire gages, as
appropriate, should be used to observe wave shape for
(The manganin wire pressure gage is particularly well
propagation studies in polymers. It has already been used quite success-
fully in Teflon and poiyethylene.)
and wmethod of fabrication should also be varied as in the case of hard
and soft aluminum.

pulses, studies should be made of attenuation with emphasis on late stage

(2)

Other Metals.

relaxation deta exist for metals other than aluminum and iron.

behavior and spall prediction criteria.

further studies of polyethylene. Such work should include the fcllowing:

Extension of the present work should first be concentrated on

(a)

(b)

(c)

Experiments using manganin wire gages, as in the
present work, should be performed at higher
stress levels to determine the dependence upon
stress of the nonsteady-state behavior which is
observed at low stresses. These experiments
should be performed on both the existing samples
(for comparison with existing data) and on newly
constructed samples with different microscopic
structure (and hence different mechanica)
properties).

The effect of wave rise time upon shock struc-
ture should be investigated. Foam attenuators
could be used to alter the shape of the input
wave. Manganin wire gages could then be used,
as in the past, to iook st the wave shape 1n the
polyethylene sample resulting from different in-
put wave shapes.

The effert of initisl temperature upon wave
propagation is very importent from both the
spplied and purely scientific viewpoints. Again,
because of their tempersture insensitivity,
manganin gages sre very well suited for the study
~{ wave shapes in polyethylene at elevated

temperatures.

Very little elastoplastic data or stress
Two

metals of particular interest to which the present work should-be ex-

various thicknesses.

suited for stress

Initial conditions such as hardness

After investigating the behavior of long duration

el &
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(d) The mechanical properties of the poiyethylene
used in the present work appear to be affected
by shocking. The material is more brittle
after shocking than it was initially and X-ray
patterns indicate some orientation of the
crystallites which was not initially present.
It is not clear at present whether the observed
changes are due to the shock or to the subse-
quent relief by lateral rarefactions. To de-
termine the effect of shock on the crystal
structure, specially designed recovery experi-
ments should be performed in which the strain
in the sumple is maintained one-dimensional as
nearly as possible.

In addition, exploratory work on other plastics should be
carried out to investigate the possibility of nonsteady-state effects.

Carbon phenolic would .e a logical candidate.

21
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SECTION 111 |
) THEORET ICAL PHASE
by

S. V. Hanagud and R. C. Alverson

1. Background

Research on shock propagation in solids has been the principal
source of information leading to an understanding of the dynamic behavior
and constitutive relations of these solids when subjected to very large
stress and very large stress rates, In the case of metals in certain
stress ranges, the wave form consists of an elastic precursor followed
Ly a plastic shock wave which carries the material to its final stress.
Some recent experimental work, (Refs. 6-9) as well as the experimental
work on hard and soft aluminum done in the present research program,
shows that the amplitude of the elastic wave is considerably higher than
that . edicted from elastic-plastic theories based on static measurements.
This phenomenon can be observed if the measurements are made within the

. first few microseconds of the formation of the two-wave structure. As
the wave propagates into the solid, the amplitude of the elastic shock
s wave decreases and asymptotically approaches the amplitude predicted
from the usual elastic-plastic theory. The mechanism for such processes
of stress relaxation (Ref. 10) depends on the particular material. The

general mathematical description of wave propagation is most conveniently

given in terms of Eulerian coordinates. In this coordinate system the
field quantities such as displacement, velocity, density, or stresses
are expressed as functions of the instantaneous position of a material
particle and of the time. Using this coordinate system and making the
assumption of uniaxial strain, to coincide with experimental work, the

governing set of equations 1s:

%
ov - Eyl 0 {conservation of momentum) (1)
x
1 . dv .
—{p)+r — = 0 (conservation of mass) (2)
J ox

29




(3)

)
n

Q ";;P.” (energy balance)

and

[}

flo, 6;, e  E L E L L., ) 0 (constitutive relations) (4))

The symbols used in these equations are explained as follows:

t = time
x = Eulerian coordinate
. . . 9 9
(*) = material derivative given by — + v —
9t dx
elx,t) = density
v(z,t) = particle velocity
o (x,t) = normal stress in x direction (positive in tension)
e = internal energy per unit mass
Q@ = heat per unit mass added by conduction, radiative

absorption, etc.
€ = straln in x-direction

f = functions defining the constitutive relation,
including thermodynamic variables.

The formulation of appropriate functions f besed on the principles
of continuum mechanics and the physical mechanism of the material 1s the
first task. Later the solution of the set of partial differen.ial equa-
tions with appropriate initial and boundary conditions can be used to

correlate and interpret the experimental data.

In some materials, such az polyethylene, the effect of thermodynamics
and viscous stresses may be more important than the stress rate effects.

Then the functions f must be defined to take these into account.




2. Constitutive Relations for Stress Relaxation

The constitutive relations for stress-relaxing materials are dis-
cussed here under the assumption of uniaxial strain. Under this assump-
tion all dependent variables are functions of one Eulerian coordinate,
x, and the time. Since there is only one nonzero velocity component,

the strain rates are given by

. dv
€ = T (5)
* ox
and
ey = ex = E!, = ny = exx = 0
The only nonvanishing components of the stress tensor are o, o,
and o, and because of symmetry under uniaxial strain we have o, =0,

Decomposition of the stress tensors into a hydrostatic pressure p and

stress deviator D., gives

1
Y (o, + 20)) A (6)
2
Dy * D, * (o, -0
1
D,, = D” = 7;(-u: + 0’)

b = D = D I = D =D =0 (1)

The formulation of the constitutive relation consists of determining
the relation between p, D-;' and the kinematic variables. It will be
assumed that the hydrostatic pressure p is a function of density

alone, i.e.,

p = flp) . (8)
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The function f(p) depends on the particular material. Two suitable forms

of f(p) are
2
p = a £ . 1 + a, £ . ] +
Py P,
Po Po\ 2
p = bl l--—p— + b, 1 - — +
= When the function f(p) is specified the remaining task is to specify

the relationship between the stress deviator and the kinematic variables,

a. Elastic-Plastic Model

The very commonly used relation between the stress deviator and the
kinematic variables is the familiar elastic-plastic relation. This can
be described as follows. In the case of uniaxial strain therz is only

one irdependent component of the stress deviator because

2
D = -2D = =2D = =(e, -07) . (9)

rx yy z2 3 y

In a similar way the components of the strain deviator Et; are

2z 3

ry L

(10)

tvy

"

)

|
a—
m
S

11 3 4

The strain-rate deviators sre
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x x 3‘81
» 1. 1 av
Eyy = 3% 7 77 %
' : 1. 1 3
E, = ~=¢ = == — . (11)
22 3 x 3 x

If the solid is defogming elastically, i.e., 1if
D, <y, y2o0 (12)

then

D,. = 2GE,, . (13)

LR

In Eqs. (12) and (13), y is the deviatoric yield stress® and G is the
modulus of rigidity. Furthermore, Tresca type of yielding has been
assumed. The solid is said to be deforming plastically in regions where

Ip | = y . (14)

Once |D..| has attained the yielding value of y, |D“I cannot increase

beyond this value. However, the strain deviator can continue to increase.

b. Flastic-Plastic Rel.xiqg Model

The elastic-plastic model cannot account for certain experimental
observations in shock wave propagation. Measurements made within the
first few microseconds have shown that the two-wave structure predicted
by the elastic-plastic model is not formed instantancously but is only
realized after some time by a process of relaxation. During the relax-
ation process, the amplitude of the elastic wave (or elastic precurlor);
is considerably higher than that predicted from the elastic-piastic
model. As the wave propagates into the solid the amplitude of the wave
decreases and asymptotically approaches a value correspondiiug to the

static yield stress.

* y = 2/3Y where ¥ 1s the yield stress 1n simple tensica.
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(1) Macroscopic Relaxation Equations

The elastic-plastic stress-strain relationships cutlined above
are macroscopic. They can be generalized to include stress relaxation.
A simple model can be constructed by considering the rate type of the

constitutive relation in the form
A .
D = F(D,E,p) (15)

where E is the rate of deformation tensor. The symbol A represents the
Janmann or co-rotational type of <tress rate (Ref. 11). In the case of
uniaxial strain these stress rates reduce to the usual time derivatives

along particle paths.

A specific relaxing type of stress-strain relationship asapplied

to the case of uniaxial strain can be written as

H Dxx - 9, D"
E = ® 16
¥ 26T 2G (16)
if
lp,, | >y (17)
otherwise .
. Dll
E,, = — . (18)
G

In theae aquations & can take the value of + 1. This accounts for the
fact that yielding can take place when the absolute velue of the deviator
reachea y. T can be called the relaxation constant and has the dimension

of time.

The first term on the righthand side of Ea. (16) takes care of
the fact that the components of the stress deviator can have, vaiues
greater than the stati¢ deviatoric yield atress. This then cen resuit in
the amplitude of the elestic precursor wsve being much larger than the
equilibrium value. The fora of the term suggests that the deviator
relaxes with time towards the static yield value. The second term on the
righthand side of Eq. (16) takes care of the elastic deformation. This

equation cen be written as

u




W e

D Y, 2k Dus (19)
= + -
X T ix 7‘

with the condition that

D = 2GE (20)

when

b | = y . (21)
Altern~tively it“can be stated that when é.‘ = 0 and D_, = 6By, then
b, = 0 . (22)

If Eq. (19) is expressed as

D,, = F_E_,p) (23)

we have

F(6y,0,0) = 0
In & similar way

D« Fo, .k, .p) (24)

ry

D - F ,E ,o) (25)

[¥] Y R W R

However, these equations will be identical to Eq. (19) in case. of uniaxial
atrain; y may be a function of some invarisnts of the stress tensor in the

general tensor.al constitutive equation.

Further generalizations can be made by considering general forms
of functions F in Eq. (19). However, these generalizations should be

based on the physicsl mechanisms and experimental observations.

In the case of hard and soft aluminum, experimental observation
indicates that a two-wave structure is formed a very short time after

impact. However, the amplitude of the elastic precursor is initially very




large comparsd with the value predicted by the elastic-plastic model.
The elastic wave amplitude decreases within a few microseconds to the
steady-state amplitude of the elastic precursor as predicted by the
elastic-plastic theory. This behavior indicates that the yield stress
is very large at early times, relaxing to the static value in a few
microseconds. (This can be called the yield reiaxation time.) It also
indicates that the relaxation of the elastic precursor towards the equi-
librium value is taking place much faster than the yield relaxation time
and thus is setting up the two-wave structure at a very early time. A
model to explain . this behavior can be obtained by adding to Eq. (16) an

additional equatior,

Yy ¥ {26)

In this case y is no longer a coustunt but
Yy = y(on,oy,p)
and decreases with time towards the static-yield value
Y 5 3,
Another way of generalizing the relaxation equation is as
follows. Equation (16) und Eq. (8) can be simplified by substituting in

them the expreasions fo: p «nd D in terns of ¢ , and eliminating v
LR 1 y

between the two equations. Then we have

g, ¢+ Flp)p = =F'(p,e,) (27
where
4G d
F(p) 3 ] —— —-!-
kY do
and
8
fley % Yo
F'(pog) = —— s o o e
(.9, T 7 T
k] ]

.
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Alternatively one can think of Eq. (27) as a one-dimensional relaxation

equation with

do

F(p) = - —Ep =

~

the quantity ¢? is the squarebf the sound speed and F'(P,U,) 1s the dis-
sipation function. Then in any one-dimensional problem a function
o, = -F(p) and F'(p,0,) should be specified. o = -F(p) will be the

elastic 0,, p relationship. This can be found from many steady-state

experimental results. A function for F'(p,0, ) based on Zener's mndel is

F'ipo,) = ————, p, = © :

where p, is the amplitude of elastic precursor when complete relaxation
has taken place. This would be the amplitude of the elastic precursor

on the basis of elastic-plastic models. Another form for F'(p,ol) can

be

pl - P‘(UI,P)
F'(p,o')

and

p, = - —— (28)

where T, is the relaxaticn constant for the yield stress.

The value of p on sny particle is of significance from the
time the particie comes under the influence of the leading elastic shock
wave. [f this time is specified as ¢, and the pressure at this instance

is p . then
p.{t,) = 7(p,)

This equation specifies the initial condition for Eq. (28). A similer
reasoning can be used to specify the initial condition for Eq. (26).

Calculation of wave profile with these equations will be discussed later.
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(2) Micrescopic Relaxation Equations (Dislocation Mechanism)

Shear yielding and resultant plastic flow in metals are due to
the motion of dislocations. A sufficient number of mobile dislocations
1s necessary to cause yielding. In dynamic problems a finite time .s
necessary for dislocation production and movement and hence for production
of plastic flow. This finite time is then the cause of the large initial

amplitudes of elastic precursor waves.

It is known that a sufficiently strong external stress can
cause a dislocation to unpin itself and hence become mobile. Dislocations
can also be created by the Frank-Read mechanism, a kind of multiplication
or breeding process, and again the sffective agency is stress. Once
unpinned, a dislocation is free to move and contribute to yielding or
plastic strain, until it again becomes trapped at another grain boundary
or impurity. The total number of moving dislocations effectively con-
tributing to the plastic strain rate zt any moment is the net result of
competition between the processes of unpinning or creation (sources) and

of trapping (sinks).

It is natural to suppose that unpinning is an excitation
process with a rate depending on the excess of shear stress over yield
stress, wvhile the Frank-Read mechanism produces new dislocations from
existing ones at a rate that is proportional to the number of existing
ones and that also depends on the excess shear stress. To simplify the
analysis we approximate the excitation process by teking the rate simply
proportional to the excess shear stress. The rate of crapping 1s of
course proportional to the number of dislocations present. These rela-
tionships can be put in mathematicai form in the following way. Suppose
that at some perticular time the mobile dislocetion denaity is N_ and the
total dislocation density is N | hence, the density of pinped dislocations
is (N, - N_). Assume that the pinned dislocations become Frank-Read
sources, so that a term g, Z(N - N ) contributes to dN_’dt. The constant
&, represents the strength of the Frank-Read source snd Z is defined to
be (7 - Y/2}, the excess shear stress above the yield point.' The pinned
dislocations may ala2o become mobilie by various freeing wmechanisms and
this contributes another term, g,Z(N, -~ N ), to the rate dN /dt. Ve

assume further that mobile dislocetions can become pinned by intersction

*
Y= 32y, *~ l/:w. "0’); bence & ¢ l/&(’u -y

[——
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with impurities, etc., thus tontributing a rate term of the fo.m
-(l/Tl)N_(v/u.), where v is the dislocation velocity and v, its maximum
value., Mobile dislocations can also simply disappear irreversibly by
migration to free surfaces and voids, giving a similar term =(1/T )N _(v/v ).
These assumptions result in the following expressions for the rate of

change of the mobile and total dislocation densities:

T tam o -2\ (2

dt g ¢ (Tl T2) = (v.) '

. doZe (N - N) L\w (2 (29)
dt 386 e - - (Tz) -(;:) *

Here g = (3/4)(g, + g,). and € = g,/(g, + g,). It can be seen from the
definit:-n that € is a number between rero and unity. When € is close to
ztero, a pinned dislocation is more likely to become freed than to create
a new dislocation. A value of € close to unity means that a pinned dis-
location will probab!y create a new one rather than becowe freed. If the
stress history at some point in the solid 1s known, Eq. (29) can be
integrated to give the total and mobile dislocation densities at this

pornt.

In order to get some ides of the choice of parameters in this
model, we consider the application of a constant stress. The ratio
(v v ) will then be constant, since the dislocation velocity 13 as.umed

to be a function of the .tress alone. Eliminating N from Eq. (29) gives

. [(] ) 4 ; v 1 1 dv, i
. - ¢ -— Py —— — ¥ - —
d(: 38 (v-) (Tl T2) dit

3 2 (% (1 - ¢) g 0
18\, T, T

We want the mobile dislocation density to ircresse with the app!ication
of stress. To eusure this, the equation above must heve a solution

which i1ncreases with time. This requices that

i




(1 - €)

€
- <0
T, T

This condition will be satisfied if we choose € close to unity and

T, > T,.

The dislocation velocity is assumed to derend on the applied

shear stress. Following Gilman and Johnston- (Ref. 12).

B
v = v_exp |-
n
y
’T-—
9
e
where
1
7 = shear stress = = (o, - oy)
‘ - .
iy = shear stress at which plastic flow starts
v, = maximum dislocation velocity
B = a constant,
Now the shear strain re is given by

Yy = bvN,
where b is the Burger's vector. The remaining *task is to interpret 7y

in terms of € .

Under the conditions of unicxial strain

Furthermors, the total strain can be split 1i1to elastic and

plastic strains. Then
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€ = < + P
X X x
€ = €° + ¢gP
y y y
€ = € + gf
2 2z
Because of symmetry .
€ = ¢€°
eP = eP
Yy 2
Furthermore
€ + eP = 0 .
y y

If it is assumed that the plastic strair does not contribute

to any volume change

€P 4+ 2¢?P =
x y
Then
eP
X
€P = - em— .
y 2

Under uniaxial strain the maximum shear strain is oriented at 45° to the

x axis and the maximum plastic shear strain rate is given by

. 1 . .
Y = 51€f - G:)
Then
co 3 "
Y T
The relaxation function is
- . 8
’ F - 2665 = EGbUN. (30)

where b 1s the Burger’s vector and N, must be calculated from Eq. (29).
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¢. Thermodynamic Considerations

The results of many wave culcuelations are in disagreement with
experiment. There are many reasons for these discrepancies, one of
which is undoubtedly the fact that the calculations are based on consti- ]
t: .ive relations which are independent of tine; 1i.e., stress relaxation
and viscous effects are neglected. However, in some materials the mac-
roscopic properties may be highly temperature-dependent, and theoretical
predictions should therefore be based on thermodynamic as well as purely
mechanical considerations. Most theories of wave propagation in solids
are based on a governing set of differential equations which is indepen-
dent of energy considerations. It is the purpose in this section to
show how a theory which includes thermodynamic considerations may be
constructed for a stress-relaxing solid. We consider the perfectly
elastic, perfectly plastic, and the plastic stress-relaxing solids, in

that order.

If we let T, S, and E denote the temperature, entropy, and internal
energy per unit mass, respectively, we have from the first and second

laws of thermodynamics

TdS = dE - o, de |

where o, are the strecs components and €, are the strain components
and we assume the summation convention over the repeated subscripts:

) .5 + + ] ]
O, €.j % O € 1O, €, *etc, The relstion above can be rewritten

in the form

3E W,

) - o'l = —T ————

€ . J oT €
LA ¥}

’he constitutive relations considered in the present work for

purely elastic behavior in the case of uniaxial strain are

o, ¢+ 20’
i -f(p) .
and
o -0
x y X
= €
26 *
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These equations can be solved for o and o in turn and the results
cen be substituted into the thermodynamic relation ebove. It is thus
readily seen that if o  and o, are independent of T, that is, if G and

f(p) are independent of temperature, then

oo oo
—_ . X 0
aT oT
and
oF
e % C 0
ijJ

This equation can be integrated directly to give the internal energy,
once the strains are given. Thus the purely elastic model which is
mechanic:lly consistent does not violate either the first or the sccond
law of thermodynemics. If, in the constitutive relations given above,
either or both G and f depend upon the temperature, we then append to
this system of equations the equation which expressec conservation of

energy:

dQ  dE 1 .
-d—t = p—.—z-o”.e

ij

In this equation Q is the heat flux or heat input, This equation,
together with the constitutive relatiass and the equations governing
ccngervation of mass and momentum and the first and second laws of
thermodynamics then give a consistent set of equations with which theo-

retical studies of wave propagation in a perfectly elastic heat-conducting

medium can be made.

We now consider the perfectly plastic solid for simplicity, and use

the von Mises yield criterion

D, D, = 2k?

€ij = wby; PRy

LP)

where ci) is the strain rate and D., is the stress devictor. 3y simple

manipulation of the above we have

R
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We also assume here for simplicity that the material is incompressible.

The equation of heat conduction or conservation of energy then becomes

dQ dE Y e
FrE TR

Again, if the yield stress is indepéndent of temperature the mechan-
ical problem is separate from the thermal problem and the latter may be

solved after the mechanical problem has been solved.

The case of a stress relasing elastic-plastic medium is much more
complex but a combination of the procedures given in the two cases above
applies. The system of equations which is both thermodynamically and
mechanically consistent is given by the conservation laws (mass, momentum,
and energy), the constitutive relations, and the combined expressions for
the first and second laws of thermodynamics. If the material properties
are independent of the temperature the problems are separate, but if f(p)
and/or the relaxation constants depend on the temperature, then the heat
conduction problem must be solved simultaneously with the mechanical

problem.

These considerations have been based on the ideas of equilibrium ;
thermodynamics, and to date no computations have beén attempted using the é
theory discussed above. For simple cases such computations are entirely ;
feasible if sufficient data on the temperature dependence of the consti-
tutive relations are known., Further extension of this work to nonequi-
librium thermodynamics depends on formulating a definition of entropy
which is consistent with the equilibrium case, The thermodynamic con-
siderations are likely to be important in some materials, since high

temperatures may be obtained at impact surfaces and the resulting tem-

et i g

perature distribution may then alter the wave shape and may be a source

of high energy dissipation.

e e e iy ot =
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3. Method of Computation

a. Characteristics of the Lif{erential Equations

The equations governing the wave propagation under uniaxial strain

can be written in the following way.

Equation expressing conservation of mass:

%p vEf . dy

3;" oy P—a; = 0 (31)
Newton's liaw:
o
x av av
—gx— p(a—t- + v 5’;)' 0 . (32)

In these equations x is the Eulerian coordinate, o, is the stress in the
x-direction, v is the particle velocity in the x-direction, ani o is the
density. Equations (31) ~nd (32), together with the appropriate consti-

tutive relationships, complete the governing equations.

Constitutive relations:

o, * 20y
-p = - = -f(p) (33)
o
.xx Dxx-ey h
=P - E,, . 34
2G 2GT ¥ (34)

"In these equations the dots represent the derivativ~ along the particle
paths. Furthermore, Eq. (34) assumes the simple one-parameter macroscopic
model for the stress relaxation. 7This equation will be simplified and put

in a form such that it can be generalized to include other mcdels,

By using the following relationship

kquatior (34 becomes

R AN 4 = ¢ (35)°




where

- 3
By definition
v
€, =

Then from Eq. (31)

p 1 (3 9p \
€ L] = — b - beund .
. P >\ t P / (37)

G -6 +=(0 -0 - 6y =-2c-§ . (38)

This equation and Eq. (33) can be used to eliminate o . Then the follow-

ing equation is obtained;

. 4G . df)-: (P) 9 Oy 2
& = (L d)y SO (Ts _by2 (39)
3P 4P . T T T 3
or
&! . 02/'7 - 'F'(,O,U,) (40)
where
46 df
2 . —— — -
. flp) % Gy 2
F o —T T
£ R - =3 (42)

Equation (40) is in a form in which most of the constitutive relatienships
involving stress relaxation and only the first-time derivative of ztress

can be written. Equation (40) can also be written as

do, = -Flpldp - F'(p,0 )dt . (43)
Then

d F'(p.cr,) dU.

Lk Mt . (44)

dt fip) dt F(p)

e e e S——ei—.




The equation expressing the conservation of mass can now be rewritten as

dCT‘ v
— + F'{p,0c)) = pFlp) — . (45)
dt cx

By introducing the notation

p, = -o, (46)
equation (45) becomes
dp, 3
— + F'(p,0,) = pFlp) =— . ‘ (47)
dt dx

The use of the definition of the derivative along the particle path yields

— + 1 — = . 4
v pec a p,P,

The eque ion oi motion [Eq. (32)] can also be written as

I w3 .
__* L, -
c ax Py 31 at . (49)
By adding Eqs. (48) and (49) we have
2. ( ) > 2 ) 2 F'
+* + + +* »
5t vo+oe) = pe 3¢ v+ o) . (50)

Similerly, by <ubtracting Eq. (49) from Eq. (48)

apx ( ) dpl ’av ( ) av '
— - — . oY - —— =
5 v -oc o oc 5 v 3 F {51)

The form of Eqs. (50) and (51) suggests that they can be written as

21 v ol F'(p,p.)
7).\, o.p, (52)

4]




and

- pel—] = F'pp) . 3
T pe £1Py (53)

where

@), - (@
dt/, an (d,ﬁ

represent the total derivatives along the paths @ and £ defi, ed by

a: 9% L (54)
Cdt v ¢
and
d
£ ;% = oy -c . 1ul)

The paths @ and £ define the chara. .eristics (Ref. 13) of the set of
nquations governing the probler ar . Eqs. (52) and (53" are the two com-
patibility relations valid along ach of these charact:ris:ics. Thes.
equatior . can be used to set up a sc .eme of numerical i.tegration of *i>

initial-boundary value problem.

These equations are valid only if |D.'| 2 v, It :Dlx| <y, the
material 1sin theelastic regime. Equations (54) and (55) tor the :har-
acteristics are still valid; however, the compatibility relatiuns are

/&p. dv
de

Qpc—- L

dt

e a

" and

dp‘\ dv
— v pel = = 0
dt /g dt /g

An alternate way of deriving the equations of characteristics

and the compatibility relations based on the cxistence proof of Cauch--

Kowalewski is explained in Appendix II.
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b. Numerical Method

The mesh points are taken to be fixed, The fixed interval Ax is
along the x-axis, and At along the time axis. The ratio Ax/At is deter-
mined from a knowledge of the maximum values of particle velocity and
the sound speed ¢. The set of fixed mesh points is shown in Figure 1l1.
The curve labeled I represents the interior boundary and the curve
" labeled Il represents the leading shock wave penetrating into the undis-

turbed medium.

iAt o :
TYPICAL
¢ INTERIOR
POINT

xe Xo+ Ox : rt nlx x
SA-8703-8

FIG. 11 FINITE DIFFERENCE MESH FOR THE METHOD OF CHARACTERISTICS

:

The numerical determination of the field quantities at a mesh point
x = xq+nlx, t = jOt differs ac:ording to whether the point is on either

Curve I or II or on an interior point, in Figure 1l1.

(1) Numerical Determination at a General Interior Point

In Figure 12, it is assumed that the point labeled x lies

somewhere on a horizontal line ¢t = ty, and that the points x,, x,, and E
]

are on a horizontal line ¢t = t, - At; the x coordinates of X, and x4

are x; = Ax and x; + Dx, respectively.

It is also assumed that the values of p_, p, and v are known at
points x,, x,, and x,. x, must lie either on or to the right of Curve I
of Figure 11 and x3 must lie either on or to the left of Curve II. The

values of the field quantities at x are to be determined.
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The first step is to ap-

x proximate the characteristic curves
through 2 by straight linss anl find
their intersections with the hori-
zontal line t = ¢, - Ot. To this end
we approximate the curve with slope

ox, ox, ox| o1, or, Ox, dx/dt = v* by the straight line

SA-8703-30 through x with slope

FIG. 12 TYPICAL MESH POINT FOR x) s vlxa)
A GENERAL INTERIOR POINT dx ! ! (56)
dt 2 '

This curve represents the particle path along which Eq. (40) is valid.

The intersection of this line with ¢t = ¢, - Ot is then denoted
by z] in Figure 12. The x coordinate of z] is then readily computed
through the formula

lolx)) + vix,)]

x; = 5 At x, . (57)

From Eq. (57) we note that x| may be greater than, equal to,

or less than x,, according to whether

vix,) « vix,) 5
2 <0
If x; 2 x, we define
x, = X,
A, 2 ——— (58}
! Ox
and
X, - ox,
Ayoom ‘—Z;:'* : (59)
W f
x; x,

® The curve da 4t ® 4 represents the characteristic curve slong which the constitutive relations are
valid leee Appcadines |1 ond 111D,
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The values of p_, p, and v at xi are then found by interpolation

through the formula
F(x}) = F(A4) + A, [F(B) - F(A)] (60)

: o
where F is successively equal to p_, p, orv, and Ais xy, B is xz, ifin is

given by Eq. (58), and 4 is x, and B is x,4 if N\, is given by Eq. (59).

.In a similar manner points x; and x3 of Figure 11 are found as

the intersections of the straight lines which approximate the curves

TR
Tt vitec
with
t = t, - Ot
Thus
v + ) (x)) ¢ (v » c)(z,)]
x, = 5 At + 1z, (61)

and

[(vA; c)x,) + }v - c)(x3)]

xy = 5 At + x, . (62)

In the equation above, (v + c)(xl), etc. denote the value of
(v + ¢) at point x;. It is to be noted that x, lies between x, and x,,

and x; lies between x, and x, because of the way in which the ratio Ax/At

was taken. We then define

o
A, = ———
, — (63)
and
xy - ox, .
Ny = —0—
3 A (64)
and the vaiues of p , p, and » at xy and x5 are then given by Eq. (60).
F(x}) = F(A) + X\ [F(B) - F(A)]

. . ] ]
where x, is successively x, and x;, etc.
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The finite difference equations which must be solved to give the

values of p_, o, and v at x can be written in the following way.
p (x) - p (x3) ¢ (el lo(x) = vlxy)] = Fllxy}ht (65)
p,(x) - p (x3) - plxy)elxydlv(z) - vixy)] = F'(xp)be (66)
In these equations

F'(x'z) = F'[p(xé),px(x;)]

F1(x3) F'[p(xg),px(xé)]

“F(x)) lplx) - plx V) - F' (x0T . (67)

p(x) - p,(x])

First p (x), v(x), and p(x) are computed from these equations with ;

F' = 0. Then D, is calculated from the following equation

p - G, L) (68)
xx 3 po : f
If
D | <=7 (69)
x 3
the calculations are complete. If
2~ :.
Fgs. (65) to (67) are used to compute px(x), ;
v(x), and pix) with F' in all the equations, [
In these calculations the vaiuve of & is +1if x @ }
D,, 20, and & = -1 if D __ < 0.
(2) Numerical Determination at a }
Point on the Boundary 1
In this case the poaint x lies on X, ox; Ox; 0%,
Curve I and is not necessarily one of the A-8703-7 i
a.pr‘iori fixed mesh points, Fff:ferring t(.) N EIG. 13 TYPICAL POINT {
Figure 13, the values of the field quantities ON THE INTERIOR
are known at x,, x;, x,, and they must be BOUMDARY
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determined at x. Note that x, and x need not be mesh points in the fixed
mesh but are both peints on Curve ’ +d hesice op a particle path, The

point x is then found from

x o= wvlx))At + x, (71)
where it has again been assumed that point x lies on t = t, and points
X, X3, X, lie on t =t - AT

The point x; is then located by

(v - )x) + (v~ e)xy)]

x; s - 5 + ox . (72)

Two cases can arise in kq. (72):

xy < xy {13)
and

x; > x4 . (74)

If Eq. (73) is satisfied, then

!

X3 7 X
by = T (15)
X3 Ty
and il Eq. (74) i= satisfied
xy - X,
N, o= T . 1
: A (76)

In either case, the values of the field quantities at x, are

found by making the proper but obvious substitutions in Eq. (60).

The finite difference equations which must be solved to yield

the field quantities are then:
p,x) - plx3) - p(x;)c(xg)[u(z) - wlxy)] = Fxy)bt (171

p,(x} - p (x}) = -F(x ) [plx) - ptx)] - F'lx)be (78)
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Along Curve I, p {x) oz v(x) is known. Then Eqs. (77) and (78) can be

used to determine the remaining two of the three quantities p (x), v(x),
p(x). Again, rhe quantities are computed with F' = 0. The stress devia-

tor D __ is computed from Eq. (78). Then 1!

XX

.

the calculations are complete. Otherwise, the calculation: are done
using Eqs. (77) and (78) with F'. Again & = +1 if D> C and 6 = -1 if
D, <0.

x
(3) Numerical Determination
at_a Point on the Shock
Wave

We now consider the point x to
be on the shock wave as shown in Figure 14
In this instancz the points x end z, lie
cn the shock wave and are not in general

. fixed mesh points. The coordinate of x is
ox, oy Ox; Wx °

- given by

FIG. 14 TYPICAL POINT ON x o= Ulx))be « xp (719)
THE SHOCK WAVE

where U(x,) is the shock wave velocity

st x,. The coordinate of x; is given by

[(v + cHxy) + (v ¢ c)(x,)]

X, = - - At v x . (80)

Again in Eq. (80) two cases can arise: If x, > x,

[
\ 1, - x,
2 -
xl xz
. ]
end if X, < x4
' -
X T X,
A -

2 Dx

-
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The values of the field quantities at x, are found by applica-
tion of Eq. (60'. The field auantities at x are then determined by the

equations

N poUlx) = plx) [U(x) - w(x)] (81)

p.(x) = pUlx)s(x) (82}

p,{x) - p (x;) ¢ p(xé)c(x;)[v(x) - v(xé)] = F'(x))A¢ (83)
4

p,(x) = i log ALY + flp) (84)

These equations are reduced to a single equation in p and the resulting

equation is solved by Newton's method of iteration,

(4) Numerical Cetermination at Int.rior Points
Near the Boundary

In this case poinis x, and x; will lie between Curve I and the
shock w ve, but point x, will lie outside of the region where the field

quantities are to be determined.

In this cuse x; and xj, together with the field quantities at
xy and x;, are determined by the same formulas as for the general interior
point, but the method differs for determining x, and the values of the

field quantities at x,.

If x, as computed from

(v + ) xy) « (v + )(x))]

x; a 3 Ag + x (85)

is greater than or equal to x,, the whole computat: : proceeds as for

the general interier point, with the exception that
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If x; is less than x,, we calculate ty by the formula

(v v lxy) + {v + e)lx))

5 tlx) - vix )tlxy) + x, - ox,
t, =
- (v + c)(xo) vy c)(xl) (86)
5 - vixg)
In this case
ty - tlxy)

2 At '

and the values of the field quantities at ty, shown in Figure 15, are

found by using Eq. (60) with the point at 1, for A4, and * for B.

o, €xy Oxg ox, Oi; Oy
SA-S780-9

FIG. 15 INTERIOR POINT
NEAR THE BOUNDARY

The finite difference equations foi determining the field
quantities at x are then given by Eqs. (65) through (68) together with
Eqs. (69) and (70), with the one exception being that At in Eq. (67)
must be replaced by (1 - A,)At.

(5) Numericel Letermination at an Interior Point
Near the Shock Wave

This is the final tyﬁo of point which must be considered and

is shown in Figure 16.
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ox; &xg OX; Xo ©X, on
SA-8763-10

FIG. 16 INTERIOR POINT
NEAR THE SHOCK WAVE

In this the points ., and % are on the shock waive, but the points
x; and x, may both lie to the right of the shock wave or only x; may lie

to che right. In any event, x, will lie to the left,

The coordinate of x; is found by

! (v + c)lxy) « (v« c)(xo)]

X, = - At + x
2 2
and
! —
N 1, x
2 T
Xy T X,

if xy lies to the ieft of x or x.

If x, lies to the right of z, or x, then x, 15 used in place of
xy in the above equat on. Again the field quantities at x, are found by
Eq. (60).

If xq lies to the right of Xy, then z; and the field quantities
at x, are computed as for the general interior point., If x; lies to the

left of x,, then x| may lie either to the left of or right of x,.

Thus for xy < x,, x; is first computed from the formula

1

[v(xz) + r(xo)]

x; = - 5 Dt ¢ x




if x} is less than x,. If the above is true, the field quantities at zy
are then found by application of Eq. (60). If, however, xi lies to the
right of x;, the quantity t| must be computed through the formula

v(xg) + v(x)

3 t'(z) - Ulxg)t(xy) + x5 - x

tl = e

! vizg) « vix)

and
ty = tlxg)
N
! bt

The field quantities at t; are found from Eq. (60) with A being x, and
and B replaced by x.

For z, several cases may also occur. We note, first, that the

3
case when x, lies to the left of z, corresponds to x being a general 1in-
3 0 P g g

cerior point; therefore, we assume that x, > x,. We first compute rj from

[(v - c)(xo) e (v - e)7)]
x; = At + «
2

. Vo<
and if x; < x,,

xo'X2

and the field quantities are readily found through Eq. (60).

If x3 > x4, the quantity t; cen be computed from

(v - )lxp) » (v - )
Ulxg)tlxg) + x - x4 - 3 tix)

t' = -
} ’ (v - c)xy) ¢ (v - ¢)lx)
Ulxy) - >

"3- t(xo)
A, = —————
At

and

PO

Y




The values of the field quantities at t, are then found again

from Eq. (60) with the appropriate but obvious subst.tutions.

This complete; the method of computation at all points except

the initial point,

(6 Initial Values

In order to determine the initial values we use the boundary
conditions and the jump conditions across the shock wave. p (1) or v(x)
is known at the initiel point. Then Eqs. (81), (82), and (84) can be
used to determine the remaining three of the four quantities U(x), v(zx),
p{x), and p(x). Again the equations are reduced to a single equetion in
p(x) and the resulting equation is solved by the method of Newton. This
method has been programmed into the digital computer Burroughs 5500 and
IBM 7090.

c. Method of von Neumann and Bichtmyer

The equations of motion and the constitutive relationships can be

rewritten as

. o, 3
v oS 5;-(°p +D. ) (87)
I dy
T - T — (88)
P Ox
p = flp) (89)
ae Dy, - Oy dv
2 67 C P (90)

These equations apply only when ID‘.' > y. In these equations, the dots
ere the time derivatives along the particle path. A simple one-parameter
relaxation model has been sssumed, for purposes of discussion. Other

models can be treated 1n this way.

One of the methods of integration of the partia! differential equa-
tions of the type expressed in Eqs. (87) to (90) is the method of
von Neumann and Richtmyer (Refs. 14,15), sometimes calied the “Q" method.




In this method, finite difference forms of the differential equatio.s are
used. The necessits of locating the shock position and of applying the
appropriate jump conditions across these shock waves 1s cl minated by
introducing a stress term defined as artificial viscous stress Q. This
stress is proportional to the gradient of the particle velocity and hus
the effect of spreading the shock discontinuities over a few cells of the
finite difference network. The iatroduction of the viscous stress intre-
duces an error in addition to the error caused by the finite difference
approximation of the differential equation. However, this approximation,
as used and demonstrated, is quite good and very useful in sclving many
practical problems. -The amount of error can be controlied by controlling
the size of finite difference network and by the minimal use of Q. The
use of Q can be kept to a minimum by introducing the artificial viscosity
stress only at the shock fronts. Even though the shork discontinuities
are spread over a few cells of a finite difference network, the jump con-
ditions across the shock waves are still satisfied within a degree of
accuracy that can be controiled by the size of the finite difference net-

work and the magnitude of Q. With this Q, Eq. (87) changes to

. )
pv = = (-p+Q-+D.) . (91)
oz

The usual expression used for @ 1is

Y
op AG\? Ov
: Aple—m + —] —A ‘
Q p)(ap 3p) 57 O (92)

where A 1s a constant, Then

Y -
» a C‘p 46 dy
Woe — lep e A= s 2] = Ax e _
o 5 P (dp 3P> 5 O D, (93)

It is the stress term propor-ional to dv/3x that provides dissipation

and spreading of the shock wave,

d. Modified Q Method

Iu the problem of wave propagaiion in stress-relaxing solids, the

dissipation is built in through the constitutive relations. This

N Al W50
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dissipation, which comes through the physical mechanism of stress relaxa-
tion, can take the place of the artificially introduced Q in the method
of von Neumann. This can be seen in the following way. Equation {90)

can be simplified to yield

dv .
D = 2GT g- - TDx’ + Ay . (94)

x
This equation ant kq. (87) yield

pv = éi <~p ¢« By - TD, _ + 26T :—> . {95)
Equation (95) contains a term properticral to dv/9dx, just as in Eq. (93).
This can provide the spreading of the plastic shcck wave. Thus we have
a dissipation term from the physical mechanism rather than an artificial
one. However, in starting the process of int:gration aa artificial Q is
needed until the calculated stress deiiator terms are sufficient to take

care of stabilizing the procedure of numer:c~'! integration.

The stability and convergence of such methods are discussed in

Refs. 15 and 16.

Finite difference equitions and the coding used tn numerical inte-

gration are similar to thosce discussed by Wilkins (Ref. 17).
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4, Decay of the Elastic Precursor

The decay of pressure at the elastic shock front can be calculated
in 2 stress-relaxing material under restrictive assumptions. The model
for this discussion will be the one-dimensional Zener 'vpe of macroscopic
relaxing material. As discussed in Section ITI-2-b{1)}, the constitutive

relation for this material will be
ﬁx - c2p = F'(p,ox) -

A restrictive assumption which makes some analytical calculation

possible is that the p - o relationship in the unrelaxed {i.e., elastic)

9
p, = A\l --;- . (96)

This reletionship is similar to the Lhydrodynamic type of relation-

material is given by

ship. It will introduce a very seriors restriction on the application of

the results; however, a trend might be indicated.

Along the leading characteristic @,

dp

x dv
—_ —_— = af! (97}
PSR

and the path of the characteristic @ is defined by

dx

E: =y +o . (98)
The constant A can be written as
2
A = o,Ug (99)

where U/, is a quantity with dimensions of velocity.

At the front-running shock wavec in a relaxing material the jump
conditions are elastic. Then the iront .unning shock velocity U can be

celculated from the' jump conditions.
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(7 = —— (100)

From Eqs. (98) and (99)

P,
Ug % ———, (101)
Po
.Dol-—p_
Hence
v o= U, . (102)

Then the jump condition expressing the conservation of mass yields.the

particle velocity

Py
V = Uo<1 - -;-) (103)

dp, Pols : PolUo
c? = — = - , ¢ = — _ (104)
dp P P

The path of the leading characteristic @ can be calculated from Eq. (97)

dx
(—-) = v+c = U, . {105)
a

Gt

Thus the leading characteristic @ and the front-running (or elastic)
shock wave coincide. Along the elastic shock wave the compatibility
equation [Eq. (97)] corresponding to the @ characteristic is valid. By
usiur the expression for . from Eq. (104), Eq. (97) becomes

i v, 3 F’ (106)
——— + - ” - N
dr | Pt gy

Along the front-running shock wave the jump conditions yield

P, = plv = plgv . (107)
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h Then Eq. (106) becomes
dp, F'
—_ = - - £108)
dt 2 1

This equution gives the rate of dccay at the wave front. If F' is given by [

Py - P, :
F'os o . (109)

T
“Then
dp, P, - P,
_— = e—— (110)
dt 2T i
{
dp, 1 {
= - = dt (111) i
P, " P, T 1
and i
i
p, = p, * Be /27 1112) ¢
where B is an arbitrary constant. The constants B and T can be deter-
mined from experimental results. If F’' is given by ’
p, = pilo,.p)
F'(ipoc) =
and
. P~ (
p, = Tz 113)
then
dp, 1 |P. ™ Py (114}
de 20 T, i .
- - =t/ T,
p, = p * [p,(0) - ple "l (115)
and
x - =t/T -
T P TS T PRRAE T U
T T P, (p,(0) - ple p (116) -
o |




t.e.
i, P, p,(0) - p} _,, >
Y T Ty e (117)
t 2 oT oT

The solution to this differential equation is
~d/2T, p:{0) - p _ .y
(%)

L -
‘2

If the initial amplitude of the precursor is different from the initial

2 —

P, = Ape P

vield value p,(0), then A, is not zero and the relaxation constant T,
tekes care of the time required to relax toward the yield value and the
formation of a two-wave structure. This two-wave structure is continually
changing with decreasing amplitude of the precursor toward the st :tic

value. This 1s taken care of by the relaxation constant T,.

These caiculations are similar to the calculation by Taylor, and any
evaluation of relaxation phenomena in this way is based on some very re-

strictive assumptions, as discussed earlier.
.
Any accurate evaluation of the relaxation phenomena must be based on

realistic p_ - p relationships and the models based on continuum mechanics.
At prescat this can be done only by numerical techniques. Furthermore,
these methods provide some freedom in the choice of parameters in the re-
laxatiosn, model, and thus the experimental results including the tlow behind

the wave front can be interpreted more accurately.
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5. Discussion cof Some Numerical Results

a. Wave C:zlculations

Experimental observations in hard ard soft aluminum indicate a two- .

wave structure at very early times; the amplitude of the elastic wave
decreases with time. The two-parameter macroscopic relcxation model was
used in a modified Q code to correlate the experimental results. The

properties of aluminum used in the calculation are as follows:

&

Py = 2.785 gm/cc

p=alp/pg = 1) + blp/py = D)2+ clp/p, - 1)°
a = 0.755 Mbar

o = 1.29 Mbar

¢ = 1.197 Mbar

0.0025 Mbar

0.287 Mbar

S o«
n n

The relaxation constants T, and T2 were intruduced earlier in
Section [I1I-2-b(1). T

structure; experimental observation indicates that it should be very

) controls the rate of formation of & two-wave

small. T, governs the rate of decay of the precursor amplitude.

The values of T, and T, used in the éalculation are 0.005 and 3.72
usec, respectively. These values were c§03én by trial and error to
match approximately the observed precursbr decay—they do not represent
a best fit. Figure 17 shows the decay of the precursor amplitude with
the penetration depth. A comparison of observed and computed precursor

decay is shown in Fig. 18.

The curve in Fig. 19 gives the variation of o with distance for
selected times when the boundary is subjected to a fixed velocity rather
than a fixed stress. This curve was computed by the characteristic method
for a one-parameter model; hence the rrofiles do not appear as two separate
waves as ohserved experimentally. Note, however, the pronounced stress
relaxation at the boundary. Computations like this are needed for the two-
parameter model, so that a more direct comparison with experiment can be

made.
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FIG. 17 DECAY OF PRECURSOR WITH PENETRATION DEPTH

87




1.
®
5 : ]
1°T *
W
S o]
2 °
| :
w (o]
3
5 - n
[
&
™y
0 . L l
0 -] 10 1) 20
PROPAGATION DISTANCE —— mm GA-5793-28

FIG. 18 DECAY OF ELASTIC PRECURSOR. Solid points are experimental;
open circias are computed.




ook T T T

0.0i2

0008

-0, —Mbar

Q004

.

r._—
p—

]
(o] i 2
X—mm

O pre o e e = e

GA-STIS-20

*1G. 19 STRESS PROFILES FOR CONSTANT VELOCITY INPUT AT THE INTERIOR BOUNDARY

b. Computation from the Characteristic Code

In the problem of stress relaxation we have a dissipation built in
through the constitutive relations. Iu the modified Q method described
in Section I11-3-d, the artificial dissipation has been kept te a minimum;
it 1s confined to the starting of the process of computation. However,
one weakness of tie method is that the elastic shock front is not clearly
defined and the elastic wave amplitude cannot be predicted exactly. To
overcome these deficiencies, the characteristic code is the most accurate
method available. The error in this method is due only to the approximation
of the differential equation by a finite difference scheme. This can be
controlled by suitably seleciing the finite difference mesh work, depend-

ing on the desired degree of accuracy.




Early numerical calculations were done f{or quartz for purposes of
illustration of the stress-relaxation properties. (At the time these
calculations were made, experimental results on aluminum were not avail-

able.) A one-parameter macroscopic relaxation model was used.

The p ~ p relationship for quartz was assumed to be:

0.3919  (g/p, - 1) Mbar

-]
u

f

Po 2.5 gm/cc

Other parameters used were:

y = 0.002 Mbar
= 0.37 Mbar
T = 0.03 usec.

Figure 20 is an x - t diagram showing the positions of the left
boundary and the position of elastic shock front with time. Figure 21
iilustrates the distribution of p_with the Eulerian coordinate x for
different values of time t. In the computation the stress on the left
boundary was kept constant at 0.1 Mbar. The curves indicate the results
obtained by the method of characteristics; the points i)lustrate the

values obtained by the modified Q method.

Figure 22 illustrates the decay of the elostic shock. Figures 23
and 24 illustrate the distributions of ihe particle velocity and the
specific volume with the Eulerian coordinate x for diiferent values of

time .
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c. Dislocation Model
{
Figures 25-25 ijlustrate the results obtained from numerical calcula-
tions (von Neumann and Richtmyer method) when the dislocation model for
stress rc'axation was used [see Section II1-2-b-(2)]}. Agair, the cal-
culations were performed only for purposes of illustration. 1Iron, which
exhibits pronounced stress relaxation, was used for calculations. The
following vaiues were used for the constants in the constitutive relation:
bN = 5.0 em~!
a9
= 0.0198 Mbar
V_ = 0.:¢ cm/usec
T, = 1.0 usec
T, = 4,0 usec i
0.035 I ]
8 Y.}
Qc.. 00000
°
0030 - 8, ¢ ~
L
° ®0
% 'Y
0025 |- o0 o®° -
o
. o° * s
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0020 — 0 ° -—
i X
8 ¢ e o
® o
o
' 0.013 ® Y -
» (-]
e °
O NO DISLOCATION
0010 }— MULTIPLICATION 8 8 _
® (+6000 (megobar & usec)™!
bN, 75 cm~! 8
[ .
0005 - (3 ~
"]
i °
0 | °e l |
0 0.! 0.2 03 1
X——cm
oA-0783-17

FIG. 25 SHOCK PROFILES SHOWING THE EFFECT OF DISLOCAT!ION MULTIPLICATION
Profiles in iron ot 0.25 ond 0.45 usec.
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FIG. 26 SHOCK PROFILES SHOWING THE EFFECT OF INCREASING .

Profiles in iron ot 0.25 and 0.45 pusec.
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Figure 25 shows the distribution of p_with the Kulerian coordinate x for
two specific times: t = 0,25 pusec and t = 0.45 psec. This figure illus-
trates the effect of dislocation multiplication; the open circles are for
no dislocation multiplication, and the dots are for g = 6000 (Mbar-usec)™!
and bN o = 7.5 cm™!. The effects of dislocation multiplication are a more

pronounced elastic precursor and a steeper plastic shock wave.

Figure 26 illustrates the effect of changing g. Two values of ¢
were used: g = 60C0 (Mbar-usec)™! and g = 20,000 (Mbar-usec)™'. A value
of 25 cm™! was used for bN,, in both cases. The higher value of g reduced

the precursor amplitude significantly.
Figure 27 illustrates the variation of bN , for a fixed value of g
of 6000 (Mbar-usec)”!. Two values of bN, .
bN,, = 1.5 cm” !

and

bN

-1
0 25.0 cm are compared.

The larger value of bN ; has the lower amplitude of elastic precursor.

Figures 28 and 29 illustrate the decay of the amplitude of the
elastic shock wave with time for different values of B and N_,.
These parameter studies illustrate the effect of various material

constants on skock propagation.

d. Attenuation of Peak Pressure

One of the 1mportant problems of practical interest 1s th. attenua-
tion of peak pressure of a pulse of finite duration. A study of this
phenomenon requires a knowledge of the unloading behavior and the
vonstitutive relations during unloading. The constitutive relations for
'oading are nov understood in some cases where stress relaxation 1s pre-
sent . however, there a.e no experimental data available on unloading

under conditinns such that stress relaxation is i1mportant.
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fo obtain some information regarding the trend that the decay of peak
pressure might follow when stress relaxation is present, the following
calculation has been performed. [t has been assumed that the relaxing
constitutive relaiion is the same in loading as well as in unloading.
The material and the constants used are the same as in the case of tiie
computation with the characteristic code. A pressure of 0.1 Mbar is
applied at “ime t = 0; the subsequent loading history is shown in Fig. 30.
This figure 1llustrates the decay of peak pressure with time. The dashed

line co.responds to elastic-plastic theory without stress relaxation.
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FiG. 30 CALCULATED DECAY OF PEAX PRESSURE IN ALUMINUM
WITH AND WITHOUT STRESS RELAXATION

L]




6. Summary

In summary, the major results of the theoretical part of this con-
tract are the development of a mathematical model of stress relaxation,
together with numerical results on the rate ot decay of the elastic pre-
cursor wave, and some computed wave profiles, The numerical results have
been correlated with experimental results and it i1s shown that the two-
parameter model of stress relaxation predicts experimental results more
accurately than the one parameter model. The computations have been per-
formed using the meti.od of characteristics and the so-called “Q' method
of von Neumann and Richtmyer. The reasons for the expenditure of effort

on the method of characteristics are:

1. The method is rore accurate than the “Q” method. It was there-

fore possible to study the effect of stress relaxation in the absence of

artificial viscosity, then to use the “Q" method to study stress .claxation,

and to compare the difference in thc results obtained by the two methods.

2. The “Q" method is highly inaccurate for situatiens involving re-
flected waves; however, results obtained by the method of characteristics
can be used to indicate currection terms which could be added to “Q"

method codes.

Another result of the present work is that the term involving stress
relaxation provides a real viscosity and hence the artificial viscosity
term may be omitted from “Q' codes when stress relaxation is present. It
should be pointed out that the stress relaxation models employed here are
most applicable to metals and 1t is quite possible that thermodynamic
effects will be of greater imporiance in plastics than stress relaxation;

this point requires further study.

it 1s to be noted that the basic differential equations used in the
present work differ {rom those used i1n the PUFF codes only in the cone
stitutive relations which are used. It i1s rnot a difficult matter to in-
corporate the stress relaxation model into a PUFF code. Some work on
expansion of the models ond more correlation with experimentsl results

should be accomplished before these models are used.
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All the shots fired under the present contract are listed below
with an indication of the puipose for firing each shoi. Some shots

were of a development nature and did not contribute significant data

points.
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APPENDIX 1

SHOTS FIRED DURING THIS PROGRAM
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APPENDIX 1
SHOT NO. TYPE ¥ PURPOSE
12,810 Quart: Calibration of quart: gages
12,812 Quartz (alibration of quart: gages
12,813 Quart: Calibration of quartr gages
12,811 2 Quart:z Development of technique to mount cuartz in projectile
12,053 Quartz Look for elastic wave in Plexiglas
12,052 Quartz Look at elastic wave in stock 202! aluminum
12,050 Mangnnin(') Look at elastic wave in stock 2024 aluminum
12,051 Manganin'®’ | Look at elastic wave in stock 2024 aluminum
12,172 Quart:z Study elastic wave in annesied 2024 aluminum
12,168 Quartz Study elastic wave in annealed 2024 aluminum
12,17 Quartz Study elastic wave in a nealzd 2024 ajuminum
12,175 Quarte Study elastic wave in anncaled 2024 ziuminum
12,1069 Quartz Study elastic wave in annealed 2024 aluminum
12,807 Quartz Study elastic wave in hardened 2024 aluminum and look for plastic
wave decay
12,808 Quart:z Study elastic wave in hardened 2024 aluminum and look for plastic
wave decay
12,173 Quartz Study elastic wave in hardened 2024 aluminum
12,171 Quart:z Study elustic wave in hardened 2024 aluminum
12,174 Quartz Staudy elastic wave in hardened 2024 aluminum
12,511 Manganin Study wave profile in polyethylene
12,512 2 Maageni: Study wave profile in polyethylene
12,513 2 Manganin Study wave profile in polyethylene
12,514 2 Mangenin Study wave profile in palyethylene
12,515 2 Manganin Study wave profile in polyethylene
12,510 2 Nanganin Study wave profile in poivethylene
12,517 < Manganin Study wave profile in polyethvlene
12,804 2 Manganin Study wave profile in polyethylene
12,805 2 Menganin Study wave profile in polyethylene
12,806 2 Manganin Study wave profile :n polyethylene

t

o Wengamin wire 2lectricelly inouloted

from Al plate by 0.001-1ach Mylar forl end potied 12 C-7 epony.

i Beagaeis vire insvloted with 0.00)-1nch Wylar send sarrousded by sluminua blechs, .
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APPENDIX 11

CHARACTERISTIC EQUATION BASED ON THE EXISTENCE
THEOREM OF CAUCHY -KOWALEWSK!
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APPENDIX II

CHARACTERISTIC EQUATION BASED ON THE EXISTENCE
THEOREM OF CAUCHY-KOWALEWSKI (Ref. 18)

We begin with the equations cxpressing conservation of mass and

momentum

ol ov o 0 (1)
- ol ==+ — =
3 P\3r TV A
) dp o]
S O A (2)
At dx dx
We write the constitutive relations in the form
o+ 20) _
p = -\— = flo) (3
3
SR o8,
- e 4 - — + — = (S - P ) 1
3 ax 2G|t ey &S, - oF )
where
T Y 1
S 2 ———— = -
‘ ( ) ) é 26T
These equations may be converniently rewritten in the form
RAN . -
1 E] J!' r?.-
S - B ) (5)
dx ‘p At dx
R }*/' Ay
-ty = ¢ - = 0 (6)
RY] dx Ax
\ N df f[a A
B S 41 < o= - (M)
At dx dr 3t Ax
8
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3% 3s

2 ov 1 1 1

AT S — 3 — = S - @ 8)
3 3x [20 YR a,] 8(S, - oV (

Although many equivalent definitions of characteristics are possible,
we adapt here the one based on the existence prcof of Cauchy-Kowalewski.

The reason for this choice is that it gets us to the desired goal along

the most direct path.

We omit rbvious details and proceed to !ook for curves f(x,t) = con-

5 e s o

stant, along which the set of Kgqs. (5) - (8) cannot be solved as an

algebraic system for the partial derivatives 3S,/9f, 9p/0f, dv/0f and

IR
Since
331 aSl of BS] of
— 2 e ed gy e =
9x af ox  3f

etc., we obtain the following set of equations:

I S TN T QT
Af Adx  Af I f af \at dx

o (A, Y, wop |
af \at ax/ ©df Ox i
!
ap (o) @y df % [of  of . {
— i Y e - E—— — ¢t = =
Q7 \at ' Ax do  af \ ot dx i
. NP as .
RN 1 " fo of \
— ; -—Z L —[ ¢ v —j - g\S‘ - (:7) = 0 !
o x 26 3f \ dx t
The matrix of the coefficients of '
}
ooy g
ar " Af " oag an af i 9

18
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3 o\
ﬂ‘ - a—f 0 "‘Il;‘(_‘—f + v —f)
Ox Ix Jt A
: of of of
0 ’ (37 t a:) * 5
_ = 0
0 -a-f + v 2’{ i[- a—f-l + v a_f 0
ot Ax dp \9t Ox
- a
[ 2G Jt ox 3 Ox i

and the determinant of this matrix is

(ﬁﬂ 2[)’_%?(31* ?.f>2_2(3_£)2_£ i_f‘_(?_z)2
3t U ox) 26 \3r T Y ox 3\ 2x 9¢  do \2x

There will be no solution for 9S,/9f etc. if this determinant vanishes.
On f = constant 9f/dt = -(3f/3x)(dx/dt) so that the determinant vanishes

when
d df 4G
. A A2 M. (9)
dt dp 3o

The feour roots given by Eq. (9) are the characteristics of the govern-
ing differential equations.
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COMPATIBILITY CONDiT!ONS
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APPENDIX 111

CONPATIBILITY CONBITIOKS

The governing differential equations are:

asl 3p dy Sv 0 (1)
3x o1 3

——+v—¢p—— 0 (2)

98 aS
1 1 4G v
_— - — — = 2Gg(S, - 8Y 3)
ot v ox 3 9x 8 1 ) (
dp dp dp
—_— —_— - el Z1- o
FYIRRF) ”(a,”’a, 4
The four characteristics are:
dx
Tt- = vl,vl.vic
where
df 4G
c - 2. =
dp Jp

If we multiply Eq. (1) by ¢, add Eq. (3) and subtract Eq. (4), we

obtain

a(q ) e )a(g ) ! M) 6w V' ).a_v Ag(S. - ~Y)
w el SR e i v ) TR AW 5 T Xl
"




et LR

Then using Eq. (2) we get

28, (v 2 (S, -
TS AR M IR

Thus we have

2Gg(S, - 6Y) .

d(S, = p) - pedv - 26g(S, - 6Y)dt = 0 (5)
along
dx
— = v o+ ¢
dt
and
(S| - p) + pedr - 26g(S| - o/)de = 0 (6)
along
dx
:i—t = v - ¢
By using Eq. (2) 1n Eq. (3) we get
4G . -
ds, + ;; dp - 26g(S, - cY)dt = 0 (1)
along
dx
dt )
and Eq. (4) can be wiitten directly as
dp -~ c¥dy < 0 (8)

along

Equations (5), (8), (T7), a

for a stress-relaxing medium,

- RPN

dx
dt

nd (8) are the compatibility equations
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